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A similar situation exists in that Asn47 lies in a break 
in the main-chain density contoured at the l a  level of the 
MIR map (Fig. 4a). This break in density persists even 
when the MIR map is recontoured at the 0.50- level. The 
amide N atom of Asn47 forms two close hydrogen-bond 
contacts of 2.42 and 2.82A to the F-carbonyl group of 
the heme; the carbonyl O atoms also have hydrogen- 
bond contacts of 2.51 and 2.54 A to N .1 of the indole of 
Trp70 and the side-chain hydroxyl of Tyr54. The density 
connecting the carbonyl group to the heme is broken. 
Inspection of the averaged TDSIR map indicates that 
Asn47 should be translationally shifted ,-, 1.0A to 
reposition the residue in density (Fig. 4b). The heme 
side-chain density to the carbonyl is connected and 
suggests that its position should be swung about 10 ° to 
lengthen the hydrogen-bond contacts to Tyr54 and 
Trp70. 

In summary, unique estimates for the phase invariants 
and phases may be obtained from the SIR joint 
probability distribution in the case when the positions 
of the heavy-atom scatterer are known. The new TDSIR 
phasing procedure appears to provide more accurate SIR 
phases than those obtained by the weighted centroid of 
the two phase estimates. The quality of the individual 
TDSIR maps, however, may still not be sufficientl~¢ 
improved to allow an unambiguous chain trace at 2.5 A 
resolution if the degree of isomorphism is such as to 
make the determination of the phase doublets difficult. 
The TDSIR method has the potential to improve the 
phases of an MIR determination to allow a better fitting 
of the modeled structure. 

PHASE-INVARIANT DISTRIBUTIONS 
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Abstract 

This paper describes a linear least-squares procedure, 
whereby, through quadrupole relationships, the 2~ 
integers that linearize sets of unique phase-invariant 
estimates can be determined. It is subsequently shown 
that the phase solutions for these linear equations can be 
obtained, even for basis sets of thousands of phases, 
without having to either build or invert the full least- 
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squares matrix. The final r.m.s, phase errors achieved by 
this method can typically be less than 5 or 10 °. 

Introduction 

Crystallographic phase invariants have played a central 
role in the determination of structures by direct phasing 
methods. Tangent formula methods for small-molecule 
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determinations have traditionally relied on the 0 (modulo 
2zr) probability estimate for the three-phase structure 
invariants (Karle & Hauptman, 1956). Efforts to extend 
these techniques to larger structures have hinged upon 
obtaining more precise estimates for these phase 
invariants utilizing algebraic formulae (Karle & Haupt- 
man, 1957; Vaughan, 1958; Hauptman, 1964; Haupt- 
man, Fisher, Hancock & Norton, 1969; Duax, Weeks & 
Hauptman, 1972; Hauptman & Duax, 1972) or probabil- 
istic formulae as applied to isomorphous replacement 
or anomalous-dispersion data (Hauptman, 1982a,b; 
Giacovazzo, 1983; Fortier, Moore & Fraser, 1985). 

Standard tangent formula procedures are insufficient 
to produce stable solutions for macromolecular structures 
when phases are refined employing only the 0 (modulo 
270 invariant estimate. Several methods that have been 
shown to improve the stability and radius of convergence 
of the phase-refinement process include the active use of 
evaluated phase-invariant estimates in a modified tangent 
formula (Olthof & Schenk, 1982), or the use of 
computational methods that explicitly incorporate the 
structure-factor amplitude constraint inherent in the 
three-phase invariant relationship which is normally 
ignored (Sayre, 1974; Debaerdemaeker, Tare & Woolf- 
son, 1985; Hauptman, 1988). An intriguing least-squares 
procedure that has been described and shown to produce 
stable phase solutions with smaller phase errors than the 
normal tangent formula makes use of linear, rather than 
trigonometric, phase-invariant equations (Woolfson, 
1977). This linear least-squares phasing procedure 
cannot be employed unless one first has a method to 
evaluate unique estimates of the phase invariants, i.e. in 
the interval between 0 to 2rrrad, and then is able to 
assign an integer modulo 2zr fraction to this value, which 
would be consistent with a phase-based solution. With 
the advent of Hauptman' s (1982b) anomalous-dispersion 
formula, unique estimates for the triples phase invariants 
within the interval 0 to 27r need not be contrived. A trial- 
and-error least-squares (TELS) procedure has been 
described (Han, DeTitta & Hauptman, 1991) by which 
a consistent set of 2a" integers may be assigned to the 
linear phase-invariant equations based on the anomalous- 
dispersion estimates. This paper outlines an alternative 
method to resolve this 2rr integer problem and determine 
the phases. 

Linear phase relationships 

A well known property of phase invariants is that their 
values are independent of the choice of structural origin 
within the same enantiomorph. Although the values of 
the individual phases, ~ ,  are affected by a shift of origin, 
Ar, 

Fh(new) = Fh(old) exp[2zri(h • Ar)], (1) 

~oh(new) = q~(old) + 2:r(h • Ar), (2) 

the values of phase invariants, e.g. 

w(h, k) = ( ~  + ~ + ~)new 
= ( ~  + ~ + ~)old + 2zr(h + k + 1). zar, (3) 

remain unaffected since the vector sum h + k + I equals 
0. The values of the individual phases, as defined by the 
real and imaginary components of F h, A h and B h, 
respectively, have no absolute meaning in the linear- 
equation sense for any chosen origin, however, because 
one is free to specify the value of the phase correctly 
within any N h times 2rr interval 

= tan-l(Ah, Bh) -q- 2:rN h. (4) 

Conversely, if one has phase-invariant estimates, 
w'(h, k), which are uniquely determined within any 0 
to 2rr interval, as may be obtained from Hauptman's 
(1982b) anomalous-dispersion estimate of the triple, it 
follows that there is an infinity of values of w(h, k), 
consistent with specific integer choices for (4), which 
must be resolved before these equations can be solved 
linearly. 

og(h, k) = ~h "~ fflk "JI- ~O I 

= o f ( h ,  k )  + 2:rr(N h + N k + NI). (5) 

From a solution standpoint, it is only necessary to 
determine one such set of integers, N ( h , k ) =  
(N h + N k + N 0, which are consistent with some chosen 
phase solution. For example, if one restricts the integer 
choices in (4) to some specified range, such that 
zr > ~o h > - J r ,  it can be seen that N(h,k)  will b e  
restricted to one of three permissible values, - 1 ,  0 or +1, 
when oY(h, k) is also uniquely specified within the same 
Jr to -J r  interval. If the individual phase values are 
randomly distributed, N(h, k) is expected to be equal to 0 
for two thirds of the time and either + 1 or - 1  for the 
remaining third of the time. 

Degrees of freedom 

In an earlier application, Woolfson (1977) used linear 
phase-invariant equations to refine phase sets that were 
the tentative magic integer solutions of Karle-Hauptman 
determinants. In a side comment, he pointed out that 
even if one did not have trial values of the phases from 
which to estimate the nearest integers of (5), because one 
has N t linear triples equations based on Np unknown 
phases, where N t normally exceeds Np by a factor five or 
more, one is free to arbitrarily assign Np of the N t triples 
integers provided that each triple corresponds uniquely 
to one, and only one, of the Np phases. Thus, in our 
situation, although we cannot a priori predict which of 
the triples integers will be 0 or 4-1 to correspond with 
individual phases restricted to the range Jr > q~ > -Jr, 
we can still correctly def'me a sizable basis set of Np of 
the Nt triples integers that are consistent with some other 
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permissible solution of the Np phases. Each of these two 
points will be considered in the sequel that follows. 

If one considers quadrupole relationships (Viterbo & 
Woolfson, 1973) among the triples invariant estimates 

+ ~o k + ~ = o9' (h, k) + 2zrN (h, k) 

--(/9 h -~- ~0p -~- ~0q : o J ( - - h ,  p) + 2rrN(-h, p) 
(6) 

--q9 k - -  (pp -3 I- q3 r ~-~ w'(-k, - p )  + 2 n - N ( - k ,  - p )  

--~01 --  ~q --  ~0 r = (.D'(--I, - - q )  + 2 r r N  ( - - ! ,  - q ) ,  

for which 

oY(h, k) + J ( - h ,  p) + w ' ( -k ,  - p )  + ~d(-l, - q )  

+ 2rr[N(h, k) + N ( - h ,  p) + N ( - k ,  - p )  

+ N ( - I , - q ) ]  = 0, (7) 

one has access to linear relationships (7) by which the 
individual N(h, k) can be determined provided that the 
number of quadrupole equations, Nq, exceeds N t, the 
number of triples invariants integers. Given that the 
second derivative of (7) with respect to any of the 
integers is zero, there is a unique linear least-squares 
solution which is independent of the initial values of 
N(h, k) that are chosen. A unique a priori phase solution 
of the linear phase-invariant equations (5) also exists, 
which does not require the testing of numerous tentative 
trial sets of phases, as was inferred in the TELS paper 
(Han, DeTitta & Hauptman, 1991). 

In closing this section, we point out that there are 
actually only N p -  3 triples integers that can be 
arbitrarily assigned for a basis set of Np phases when 
the quadrupoles:triples ratio is sufficiently high. In 
retrospect, this may have been anticipated from the 
structure of the quadrupole (6). ff one had chosen the ~ ,  
~0p and q9 k phases to assign integers for N(h, k), 
N ( - h , p )  and N ( - k , - p ) ,  respectively, one cannot 
assign an arbitrary integer for the fourth remaining triple 
of the quadrupole, N( - I ,  -q ) ,  even though none of its 
three constituent phases (~, qgq, ~or) has been previously 
used to assign an integer for another triple. This is 
because N( - I ,  - q )  must equal the sum of the first three 
integers minus the sum of the four w' values. Different 
triples, not linearly connected to previously assigned 
integer values, must be selected to satisfy these 
constraints. Thus, although a single quadrupole has six 
independent phases, only three phases may be used to 
arbitrarily assign integers for three of the four triples. 
Moreover, if one performs a convergence mapping 
(Germain, Main & Woolfson, 1970) on the quadrupoles 
of an overdetermined set of triples, one will always 
obtain Np - 3 'origin defining' triples. This difference of 
three from the total number of Np phases appears to be 
constant and independent of the fact that certain space 
groups may require fewer than three phases to define an 
origin for the triples basis set (the enantiomorph is 
always chosen by the handedness of the o9' estimates). 

Convergence mapping (see Germain, Main & Woolf- 
son, 1970) is a procedure that may be used to determine 
the reverse order of phase determination for a list of 
triples invariants, and consequently identify a small 
starting set of basis phases from which all of the other 
phases may be determined when the procedure is 
executed in the forward direction. In the above applica- 
tion, to determine the starting basis set of triples 
invariants for a set of quadrupoles equations, one sums 
a weight of reliability for each triple, based on the 
number of quadrupoles into which it enters. The triple 
having the lowest reliable weight is ordered to be solved 
last, and its quadrupole contributions to the remaining 
triples sums is subtracted. The procedure is repeated to 
identify the next triple that is to be eliminated from the 
quadrupoles list, which is the triple currently having the 
lowest weight of reliability among those triples that have 
not been eliminated, and the procedure repeated for the 
remaining triples until a block of Np - 3 triples vectors is 
identified which have zero weight of reliability. We will 
refer to this meaning of 'convergence' as a CVG 
procedure to distinguish it from the use of convergence 
in the mathematical sense in other parts of this text, as 
meaning the asymptotic approach to a solution of a set of 
simultaneous equations by iterative methods. 

Various CVG mapping criteria can be explored to 
select the Np - 3 basis integers for a particular structure. 
A CVG ordering based on fib,k, the minimum of the 
current total number of quadrupoles per triple at any 
point in the CVG procedure as described above, 

~h,k - -  ~ wti, (8) 
Nq, 

which is weighted on the lack of closure of the 
quadrupoles, 

w t / =  0.5{1 + cos[og(h, k) + oJ(-h,  p) 

+ o g ( - k , - p )  + oY(-l,-q)]}, (9) 

may be shown to be an effective method for this purpose. 
Here, the weights wti are close to 1.0 when the sum of 
the four oY values equal zero (modulo 2rr), which it must 
for error-free data, and 0.0 when the sum of the errors in 
the individual w' estimates approach Jr (modulo 2zr) 
when random Gaussian r.m.s, errors are added to the 
initial oY estimates. Furthermore, it will be shown that the 
initial estimates of the remaining triples integers that one 
obtains by extension through this CVG map are often 
accurate enough to ensure a solution of (5) that will 
converge in a small number of cycles using the diagonal 
approximation to the full least-squares matrix. More so, 
especially, if the errors in the initial a/ estimates have 
been previously minimized utilizing the same quadrupole 
identities 

exp[iw'(h, k)] = ~ exp{i[-og(-h, p) - oY(-k, - p )  

- -w ' ( - l , -~ ]} /Nq , ,  (10) 
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where equation (10) is complex valued and must be 
evaluated by a tangent formula expression based on its 
real and imaginary components summed over the number 
of quadrupole relationships Nqi into which co'(h, k) 
enters. This tangent formula ref'mement of the initial co' 
values will be referred to as an co' ref'mement, so as not to 
be confused with the least-squares-refinement procedures 
to determine the 2or integers of (7) and, subsequently, the 
individual phases by means of (5). 

Given the above analysis, calculations were performed 
to determine whether in practice the triples integers were 
indeed solvable by these methods using reasonably 
precise experimental data. 

Computational analysis 
All of the calculations were performed on a Silicon 
Graphics Iris workstation. A 0.85 A resolution data set 
from the triclinic structure of a synthetic non-peptidic 
enkephalin analog was initially used to develop the 
integerization procedure: ENKA, ethyl 2-{(2S)- 
3,4,4a,5,6,7a-hexahydro-6-oxo-2-(phthalimidomelhyl)- 
2H-pyrano[2,3-b]pyrrol-7-yI }-4-methylvalerate, 
C24H30N206, P1, Z -- 3, i.e. 96 non-light atoms (Smith 
& Krstenansky, 1994). 

Experimentally derived co' values for the native data of 
ENKA do not exist as the structure has no significant 
anomalous signal. This small low-symmetry structure 
was mainly chosen to simplify and scale down the size of 
the calculations during the initial testing and debugging 
of computer codes. The co' values that were first used 
were error-free values computed from the known 
structure. Subsequent calculations employed co' values 
to which random Gaussian-distributed r.m.s, errors of 
various magnitudes had been added. In these latter 
calculations, it is important to note that if the error, 8co', 
added to the true value of co' caused the value to fall 
outside the bounds of Jr and -Tr, e.g. co' + 8co' > 7r, it 
was reset within the or to -or range by subtracting 2or rad 
such that its adjusted value actually differed from co' by 
2or - 8co' rad rather than 8co' rad, which in the majority of 
cases would represent the smaller of the two values. This 
'wrap around' penalty cannot be justifiably ignored in 
our calculations, and actually makes the task of obtaining 
a convergent solution much more difficult. 

The first question that had to be resolved for the 
ENKA calculations dealt with the number of E values 
that had to be chosen in order to obtain a sufficient 
quadrupoles:triples overdeterminancy for (7) to yield 
reliable results. A calculation based on the 1000 largest E 
values greater than 1.34 produced 28474 triples and 
174884 quadrupole relationships for an overdetermi- 
nancy ratio of 6.14. It took 9 s to generate these triples 
and another 1.5 min to generate the quadrupoles and 
index their constituent triples with their position numbers 

in the original triples list. It was noted that, if the ratio of 
quadruples to triples was much less than six, moderate 
r.m.s, phase errors in the determination of the co' 
estimates were often sufficient to produce unreliable 
results. That is, although (7) is an exact algebraic 
identity, it may be numerically imprecise due to errors in 
the co' estimates, especially if the number of contributors 
is small. 

It was obvious that brute-force full-matrix inversion 
procedures for evaluating the triples integers via (7) were 
out of the question. Given that it took 15 min to invert a 
400 x 400 matrix on an Iris Indigo workstation, and that 
computation times increase proportional to the cube of 
the size of the matrix, it was estimated that it would 
require more than ten years to evaluate the triples 
integers in this way. However, since the matrix of the 
phase-invariant equations is quite sparse, and a large 
initial starting set of integers may be arbitrarily assigned, 
it was hoped that more efficient procedures to solve (7) 
could be found. 

If we began with the correct integer choices (+1, 0, 
- 1 )  for a unique set of Np integers corresponding to a 
non-singular matrix, it was possible to assign initial zero 
values for the remaining integers and verify that the 
larger shifts indicated by a diagonal-matrix least-squares 
refinement tended to correctly indicate the +1 and - 1  
integers. Using error-free co' values, it was possible to 
determine the values of the 28474 integers in five 
iterative least-squares cycles that required less than 2 rain 
of CPU time and, moreover, all 28 474 integers were 
determined correctly. It was also possible to use a 
diagonal-matrix least-squares method to solve the 28 474 
equations (5) for the values of the 1000 basis phases in 
seven iterative cycles that required a total time of only 
9s. Starting with an initial zero value for the 1000 
phases, the r.m.s, phase error rapidly reduced from 12 ° at 
the end of the In'st cycle and converged to a mere 0.05 ° at 
the end of the seventh cycle. This number represents the 
round-off error of the computer since the final phase 
error (18~01) is expected to be zero since it is related to 
(lSco'l), the average phase error of co', by 

(1~1)  -- (18co(h,k)'l)/N,(h) 1/2. (11) 

Thus, even if the average error in co' is large, say 60 ° , one 
might anticipate a phase-ref'mement convergence of 
~, 6.5 °, given that each phase is determined by an 
average of 85 triples contributors. 

The use of a pre-conditioned Krylov algorithm 
adapted for sparse matrices gave significantly better 
results than the diagonal-matrix least-squares method of 
solution, but neither method was found to be effective 
when the chosen Np basis integers were all assigned a 
zero value or randomly assigned + l ,  - 1  and 0 values 
corresponding to the expected 1/6, 1/6, 2/3 distribution 
for these integers. If the Np basis integers are not 
assigned their correct (+1, 0, - 1 )  values, many of the 
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remaining integers must have values outside the 4-1 
range and the diagonal matrix and pre-conditioned 
Krylov procedures are not sufficient to determine if a 
large calculated shift should correspond to a magnitude 
of 1, 2 or larger. A full-matrix procedure will clearly 
resolve this dilemma, but it remains to be shown whether 
a more efficient matrix-solution method can achieve the 
same goal in a more reasonable time frame. 

At this point, it was realized that the integerization 
problem could be solved through the quadrupoles CVG 
map in a rather straightforward manner without having to 
resort to standard matrix-solution methods. 

A triples CVG map for the 174 484 quadrupoles was 
computed from which 997 triples integers were deter- 
mined as the starting basis set, instead of the 1000 
anticipated values. It was easy to verify that if one had 
error-free to' values, one could assign the basis integers 
any values and indeed correctly determine a self- 
consistent set for the remaining 27 477 integers without 
a single error. Any number of simple recursive schemes 
can be outlined by which the integers may be reset to the 
(+1,  0, - 1 )  range such that the diagonal-matrix 
refinement method would be sufficient to determine the 
phases from initial zero values as described earlier. 

The calculations were next repeated using to' values, 
which incorporated random Gaussian-distributed r.m.s. 
phase errors of varying magnitudes. The results of 
refining these to' estimates to minimize the initial error 
are reported in Table 1. CVG maps were redetermined 
using /~h.k weights reflecting the lack of closure of the 
quadrupoles (9). The integer extension procedure 
continued to obtain correct integer values for the vast 
majority of the 28 474 triples as long as the r.m.s, phase 
error in the quadrupole-refined values of to' did not 
exceed 45 ° . 

We next wanted to test these methods using a more 
realistic example of empirically determined to' estimates. 
In this sequel, we re-examined the TELS analysis of the 
1.5 A cytochrome c550 data that was reported earlier 
(Han, DeTitta & Hauptman, 1991). This second data set 
was obtained from the deposited native data of the 
orthorhombic P212121 form of this 134 amino acid 
structure (Timkovich & Dickerson, 1976). An anoma- 
lous-dispersion data set was simulated by adding the 
anomalous signal of the PtCI~ -2 derivative to the native 
measured data. A total of 31 360 triples were generated 
from 532 Friedel pairs of data that had E magnitudes 
greater than 1.28, the to' estimates were obtained directly 
from Hauptman's anomalous-dispersion formula. The 
total number of quadrupoles relating these triples was 
368 323 for an overdeterminacy of 11.75. The average 
r.m.s, error of the triples invariant estimates was 84.96 °, 
and all attempts to minimize this error by to' refinement 
failed. This negative result may have been anticipated 
from our experience with the ENKA data presented in 
Table 1. It was necessary to proportionately reduce this 
error to less than 70 ° in order to achieve a refinement that 

Table 1. Progress of the refinement of to' values for 
ENKA, which include random Gaussian r.m.s, phase 

errors of various magnitudes 
Nine trials were examined which had initial modeled r.m.s, phase errors 
between 10 and 80 °. The phase errors listed are an average of  five 
separate trials. The refinement fails to converge if  the initial error 
exceeds 75 °, as is indicated in trial 9 where the f'mal r.m.s, phase error 
diverges to the random expected value of  zr/31/2rad. When the 
procedure converges, the f'mal r.m.s, phase error is usually reduced to 
about a sixth of  the initial starting value. 

Initial First Final Number  of  
Trial r.m.s. 8~0 cycle cycle cycles 

1 10 3.1 1.7 4 
2 20 6.0 3.1 4 
3 40 18.7 6.4 5 
4 50 26.6 8.2 5 
5 60 50.2 9.9 6 
6 65 58.1 11.3 8 
7 70 65.7 13.6 12 
8 75 72.5 19.3 16 
9 80 78.6 103.9 >20 

reduced the initial r.m.s, error to 20 °, as is reported in 
Table 2. Here we note that the average r.m.s, error of the 
refined to' values is inversely correlated with an 
empirically derived weight, wt[o~(h, k)], corresponding 
to the phase-invariant consistancy or relative 'alpha' 
value of the quadrupole sum 

wt[ot(h, k)] 

= ( [(N~iCOSA)2+ (N~qiSinA)2]I/2//Nqi)~ 

(12) 

where A -- --to'(--h, p) -- to'(--k, --p) -- to'(--l, --q), 
n -- [Nqi(min.)/Nqi] 1/2 and Nqi(min.) is the value of Nqi 
associated with that triple which has the smallest value 
for Nqi among the 31360 triples. The values of wt(ot) 
may be somewhat better fit in the range of 1.0 to 0.0 by 
perturbing the value of the exponent n. Table 2 lists the 
average r.m.s, error sorted into 20 equal groups on the 
decreasing magnitude of wt(ct), both after the first and 
eleventh cycles of to' refinement, at which time the r.m.s. 
phase error in the to' values had been reduced to 19.9 °. 
Two additional cycles of to' refinement using lack-of- 
closure weights (9) permitted a further reduction to 10.6 °, 
after which time the equations were successfully 
integerized from the quadrupoles CVG map as was 
described in the ENKA calculations. Note that, because 
of the P212121 translational symmetry of the cyto- 
chrome c550 structure, the triples phase relationships 
often contain a fractional shift of Jr when the phases 9hi 
are re-expressed in terms of their standard parent form 

+ 9k + 91 + Jr = to'(h, k) + 2zrN(h, k) (13) 

such that to'(h, k) - Jr must replace the value of to'(h, k) 
in the P1 ENKA example (5). It is necessary to make this 
transformation prior to solving the linear equations for 
the individual phase values. 
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Table 2. Progress of the 09' refinement for cytochrome 
C550 

The 31 360 triples are analyzed in 20 groups of 1568 each. Entries on 
the left-hand side of the table are sorted on decreasing magnitude of the 
A value of the anomalous-dispersion estimate, while those to the right of 
columns five and seven are sorted on decreasing magnitude of ~,k after 
one and eleven refinement cycles. Column one gives the shell number, 
column two lists the average A value of the shell, column three gives the 
average cosine expected from the II(A)/Io(A) statistic, column four 
reports the average value of the cosine of Ogtrue. Columns five and seven 
record the average value of wt[a(h, k)] after one and eleven cycles. The 
root mean square value of the residual phase error between 09true and 
o9~c after the first and eleventh refinement cycles are listed in columns 
six and eight, respectively. The r.m.s, phase error at the end of the 1 lth 
cycle was 19.9 °. Two additional final cycles employing lack-of-closure 
weights (9) further reduced this error to 10.6 ° . 

Shell (Avalue) 11/10 cosogt~ e wt(oq) R.m.s. wt(oql) R.m.s. 
1 1.838 0 . 6 7 3  0.625 0.99 16.0 0.98 15.1 
2 1.197 0 . 5 1 3  0.515 0.96 17.8 0.96 16.5 
3 1.004 0 . 4 4 9  0.421 0.95 18.5 0.95 17.4 
4 0.888 0 . 4 0 6  0.409 0.94 20.5 0.94 18.3 
5 0.802 0 . 3 7 2  0.351 0.93 21.7 0.93 18.1 
6 0.738 0 . 3 4 7  0.358 0.91 24.1 0.92 19.4 
7 0.685 0 . 3 2 5  0.335 0.90 25.5 0.92 18.5 
8 0.639 0 . 3 0 5  0.321 0.89 27.3 0.91 18.4 
9 0.599 0 . 2 8 8  0.274 0.88 29.0 0.90 20.3 

10 0.564 0 . 2 7 2  0.261 0.87 31.7 0.89 19.6 
11 0.531 0.257 0.245 0.84 34.3 0.88 20.7 
12 0.500 0 . 2 4 3  0.236 0.82 36.0 0.87 20.9 
13 0.472 0 . 2 3 0  0.224 0.80 41.7 0.86 20.8 
14 0.446 0 . 2 1 8  0.223 0.78 44.7 0.85 21.6 
15 0.420 0 . 2 0 6  0.214 0.74 49.5 0.84 22.7 
16 0.394 0 . 1 9 4  0.200 0.70 55.5 0.82 22.0 
17 0.368 0.181 0.191 0.65 61.7 0.81 22.9 
18 0.338 0 . 1 6 7  0.158 0.57 68.2 0.79 22.8 
19 0.305 0 . 1 5 1  0.130 0.47 74.6 0.76 23.7 
20 0.254 0 . 1 2 8  0.152 0.30 78.2 0.68 26.9 

Discussion 

The use of a quadrupole-based triples CVG map to 
evaluate the integers for the linear least-squares triples 
invariant equations of the ENKA trial structure is very 
encouraging, o)' refinement typically reduces the initial 
r.m.s, phase-invariant error by a sixfold factor as seen by 
comparing columns 2 and 4 of Table 1. All 28 474 triples 
integers could be correctly determined from the CVG 
map as long as the final refined error in o9' was less than 
20 ° . Note that this procedure rapidly deteriorates and 
fails to converge for trial 9 of Table 1 when the initial 
r.m.s, phase error added to 09' exceeds 75 °. 

Similar computations utilizing empirically determined 
09' values for the cyctochrome c550 test structure failed to 
converge because the initial r.m.s, errors in these values 
averaged 85 °. A convergent o)' refinement could only be 
obtained after artificially reducing this error to less than 

70 ° in a proportional manner, as is indicated in Table 2. 
Once the overall average r.m.s, phase error was reduced 
to 10.6 °, all 31 360 triples integers could be correctly 
determined from the CVG map without a single error. 
Given that there are an average of 177 triples for each 
phase, the final individual phase error from solving the 
linear o9 equations (5) should approach 10.6/1771/2 or 
about 0.80 ° by (11). The actual average r.m.s, phase error 
of the 532 individual phases determined from the 
linearized equations was 6.2 °, compared to 39.1 ° using 
the TELS method. The fact that the phase refinement did 
not converge to its expected limit of 0.80 ° indicates that 
the r.m.s, errors from the o9' refinement were not 
normally distributed but were highly correlated with 
the values of the individual phases. These results may 
represent a significant improvement as to what was 
reported earlier, but it still remains to be demonstrated 
whether the co' ref'mement/CVG mapping technique will 
be useful in many practical applications or whether the 
number of structures that can provide initial co' estimates 
with a r.m.s, error less than --,70 ° is too restrictive. 

This work was supported in part by NIH grant 46733. 
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